Chapter 5 Properties of Triangles

Section 5 Inequalities in One Triangle

GOAL 1: Comparing Measurements of a Triangle

Previously, we discovered a relationship between the positions of the longest and shortest sides of a triangle and the positions of its angles.

The diagrams illustrate the results stated in the theorems on the next slide.

THEOREMS

THEOREM 5.10

If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side.

THEOREM 5.11

If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.

Example 1: Writing Measurements in Order from Least to Greatest

Write the measurements of the triangles in order from least to greatest.

GIVEN AC > AB

PROVE $m \angle ABC > m \angle C$

Paragraph Proof Use the Ruler Postulate to locate a point D on \overline{AC} such that DA = BA. Then draw the segment \overline{BD} . In the isosceles

.

The proof of Theorem 5.10 above uses the fact that $\angle 2$ is an exterior angle for $\triangle BDC$, so its measure is the sum of the measures of the two nonadjacent interior angles. Then $m\angle 2$ must be greater than the measure of either nonadjacent interior angle. This result is stated below as Theorem 5.12.

m/A+m/B-m/

THEOREM

THEOREM 5.12 Exterior Angle Inequality

The measure of an exterior angle of a triangle is greater than the measure of either of the two nonadjacent interior angles.

 $m \angle 1 > m \angle A$ and $m \angle 1 > m \angle B$

Example 2: Using Theorem 5.10

In the director's chair shown, AB \cong AC and BC > AB. What can you conclude about the angles in \triangle ABC?

B/c AB cong. AC \rightarrow <B cong. <C B/c BC > AB & AB cong. AC \rightarrow BC > AC \rightarrow <A > <B, <A > <C

Not every group of three segments can be used to form a triangle. The lengths of the segments must fit a certain relationship.

Example 3: Constructing a Triangle

Construct a triangle with the given group of side lengths, if possible.

THEOREM

THEOREM 5.13 Triangle Inequality

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

$$AB + BC > AC$$

$$AC + BC > AB$$

$$AB + AC > BC$$

Example 4: Finding Possible Side Lengths

A triangle has one side of 10 centimeters and another of 14 centimeters. \times Describe the possible lengths of the third side.

EXIT SLIP