Chapter 5

Properties of Triangles

Section 5
 Inequalities in One Triangle

GOAL 1: Comparing Measurements of a Triangle

Previously, we discovered a relationship between the positions of the longest and shortest sides of a triangle and the positions of its angles.

The diagrams illustrate the results stated in the theorems on the next slide.

THEOREMS

THEOREM 5.10

If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side.

THEOREM 5.11

If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.

$m \angle A>m \angle C$

$$
E F>D F
$$

Example 1: Writing Measurements in Order from Least to Greatest

Write the measurements of the triangles in order from least to greatest.

b.

GIVEN $>A C>A B$

PROVE $>m \angle A B C>m \angle C$
Paragraph Proof Use the Ruler Postulate to
 locate a point D on $\overline{A C}$ such that $D A=B A$. Then draw the segment $\overline{B D}$. In the isosceles triangle $\triangle A B D, \angle 1 \cong \angle 2$. Because $m \angle A B C=m \angle 1+m \angle 3$, it follows that $m \angle A B C>m \angle 1$. Substituting $m \angle 2$ for $m \angle 1$ produces $m \angle A B C>m \angle 2$. Because $m \angle 2=m \angle 3+m \angle C, m \angle 2>m \angle C$. Finally, because $m \angle A B C>m \angle 2$ and $m \angle 2>m \angle C$, you can conclude that $m \angle A B C>m \angle C$.

The proof of Theorem 5.10 above uses the fact that $\angle 2$ is an exterior angle for $\triangle B D C$, so its measure is the sum of the measures of the two nonadjacent interior angles. Then $m \angle 2$ must be greater than the measure of either nonadjacent interior angle. This result is stated below as Theorem 5.12.

THEOREM

theorem 5.12 Exterior Angle Inequality

The measure of an exterior angle of a triangle is greater than the measure of either of the two nonadjacent interior angles.

$$
m \angle 1>m \angle A \text { and } m \angle 1>m \angle B
$$

Example 2: Using Theorem 5.10

In the director's chair shown, $\overline{A B} \cong \overline{A C}$ and $B C>A B$. What can you conclude about the angles in $\triangle A B C$?
$B / c A B$ cong. $A C \rightarrow<B$ cong. $\angle C$
$B / C B C>A B \& A B$ cong. $A C \rightarrow B C>A C$ $\rightarrow\langle A><B,<A><C$

GOAL 2: Using the Triangle Inequality

Not every group of three segments can be used to form a triangle. The lengths of the segments must fit a certain relationship.

Example 3: Constructing a Triangle

Construct a triangle with the given group of side lengths, if possible.
a) $2 \stackrel{1}{\mathrm{~cm}}, 2^{2} \mathrm{~cm}, 5 \frac{3}{\mathrm{~cm}}$

$$
2+2>5
$$

$$
4>5 F
$$

no \triangle
b) $3 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$
$3+5>2$
$5+2>3$
$3+2>5$ F
no \triangle
c) $4 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$

$$
\begin{aligned}
& 4+2>5 \\
& 2+5>4 \\
& 4+5>2
\end{aligned}
$$

$$
\text { yes } \Delta
$$

THEOREM

theorem 5.13 Triangle Inequality

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

$$
\begin{array}{ll}
A B+B C>A C & (1)+(2)>(3) \\
A C+B C>A B & (3)+(2)>(1) \\
A B+A C>B C & (1)+(3)>(2)
\end{array}
$$

Example 4: Finding Possible Side Lengths
(1)

A triangle has one side of 10 centimeters and another of 14 centimeters. Describe the possible lengths of the third side.

EXIT SLIP

